236 research outputs found

    Charge Disproportionation and Spin Ordering Tendencies in Na(x)CoO2

    Full text link
    The strength and effect of Coulomb correlations in the (superconducting when hydrated) x~1/3 and ``enhanced'' x~2/3 regimes of Na(x)CoO2 are evaluated using the correlated band theory LDA+U method. Our results, neglecting quantum fluctuations, are: (1) allowing only ferromagnetic order, there is a critical U_c = 3 eV, above which charge disproportionation occurs for both x=1/3 and x=2/3, (2) allowing antiferromagnetic order at x=1/3, U_c drops to 1 eV for disproportionation, (3) disproportionation and gap opening occur simultaneously, (4) in a Co(3+)-Co(4+) ordered state, antiferromagnetic coupling is favored over ferromagnetic, while below U_c ferromagnetism is favored. Comparison of the calculated Fermi level density of states compared to reported linear specific heat coefficients indicates enhancement of the order of five for x~0.7, but negligible enhancement for x~0.3. This trend is consistent with strong magnetic behavior and local moments (Curie-Weiss susceptibility) for x>0.5 while there no magnetic behavior or local moments reported for x<0.5. We suggest that the phase diagram is characterized by a crossover from effective single-band character with U >> W for x>0.5 into a three-band regime for x U_eff <= U/\sqrt(3) ~ W and correlation effects are substantially reduced.Comment: 10 pages, 8 figures, corrected a few typos and changed reference

    Nax_xCoO2_2 in the x -> 0 Regime: Coupling of Structure and Correlation effects

    Full text link
    The study of the strength of correlations in Nax_xCoO2_2 is extended to the x=0 end of the phase diagram where Mott insulating behavior has been widely anticipated. Inclusion of correlation as modeled by the LDA+U approach leads to a Mott transition in the aga_g subband if U is no less than Uc_c=2.5 eV. Thus U smaller than Uc_c is required to model the metallic, nonmagnetic CoO2_2 compound reported by Tarascon and coworkers. The orbital-selective Mott transition of the aga_g state, which is essentially degenerate with the egβ€²e'_{g} states, occurs because of the slightly wider bandwidth of the aga_g bands. The metal-insulator transition is found to be strongly coupled to the Co-O bond length, due to associated changes in the t2gt_{2g} bandwidth, but the largest effects occur only at a reduced oxygen height that lies below the equilibrium position.Comment: 8 pages with 9 embedded figure

    Band structure renormalization and weak pseudogap behavior in Na_{0.33}CoO_2: Fluctuation exchange study based on a single band model

    Get PDF
    Based on a single band Hubbard model and the fluctuation exchange approximation, the effective mass and the energy band renormalization in Na0.33_{0.33}CoO2_2 is elaborated. The renormalization is observed to exhibit certain kind of anisotropy, which agrees qualitatively with the angle-resolved photoemission spectroscopy (ARPES) measurements. Moreover, the spectral function and density of states (DOS) in the normal state are calculated, with a weak pseudogap behavior being seen, which is explained as a result of the strong Coulomb correlations. Our results suggest that the large Fermi surface (FS) associated with the a1ga_{1g} band plays likely a central role in the charge dynamics.Comment: 5 pages, 5 figure
    • …
    corecore